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A B S T R A C T

This study investigates the temporal dynamics of flood insurance adoption patterns across U.S.
counties by analyzing National Flood Insurance Program data through the lens of social memory
and risk perception. Using change point detection methodologies, we identify significant shifts in
insurance purchasing behavior following flood events and quantify both the magnitude (salience)
and memory (time-to-forget) of these post-flood responses. We show that social memory of
flood events, as measured through insurance participation rates, may be considerably shorter and
more heterogeneous than previously suggested in the literature. By including demographic, en-
vironmental, and institutional variables, we disentangle the multi-modal distribution of salience
and memory. We identify three components driving insurance adoption: social vulnerability,
risk perception, and flood damage patterns. Subsequent cluster analysis of these components
reveals five distinct county profiles, with particularly notable findings regarding areas where
social vulnerability coincides with low risk perception. The results demonstrate spatiotemporal
variations in community responses to flood risks and suggest that only diverse approaches can
successfully maintain equitable sustained insurance coverage.

1. Introduction

Natural disasters, particularly floods, pose significant challenges globally, causing loss of life, displacement, and

widespread infrastructure damage (Wing et al., 2018, 2020). Flooding stands out as the most frequently occurring

natural hazard, with rising risks and unequal exposure expected due to climate change (Wing et al., 2022). Even as

the threat and financial impact of flooding grow, recent estimates indicate that between two-thirds and 92% of flood-

exposed properties are currently uninsured (Choi et al., 2024; CBO, 2024).

The United States National Flood Insurance Program (NFIP) is a federal government program that provides flood

insurance to homeowners, renters, and businesses in participating communities. The program was created by the United

States Congress in 1968 to address the lack of flood insurance options in the private market. The primary goal was to

reduce the financial burden on the government from post-flood disaster relief and to internalize the costs of floodplain

occupation through flood insurance with risk-based premiums. This approach aimed to promote the economically
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efficient use of floodplains while encouraging floodplain management measures for communities (Bin and Landry,

2013).

The NFIP program faced initial challenges with low community enrollment levels and low insurance purchase

rates by individual property owners in participating communities (Michel-Kerjan and Kousky, 2010). Subsequent

legislation was enacted, establishing that property owners residing in 100-year floodplains (also called Special Flood

Hazard Areas, or SFHAs) are bound by federal law to obtain flood insurance if they have a mortgage from a federally

regulated or backed lender. Regulations also mandate community enrollment as a pre-condition for qualifying for

federal disaster assistance on a communal and individual levels. These measures increased the program’s impact, with

an estimated 22,000 communities benefiting from NFIP coverage nationwide (Kousky, 2017). Despite these efforts,

the current level of flood insurance coverage of the NFIP is insufficient compared to the theoretical social optimum

Gallagher (2014); Kunreuther et al. (2009); Kriesel and Landry (2004). The insurance program’s low effectiveness

has motivated a growing number of researchers to analyze the drivers behind flood insurance demand, finding hazard

proximity (Kousky, 2010; Zahran et al., 2009; Bin et al., 2008), risk perception (Cannon et al., 2020; Bin and Landry,

2013; Lindell and Hwang, 2008) and demographic characteristics (Lucas et al., 2021; Wang et al., 2017; Landry

and Jahan-Parvar, 2011; Michel-Kerjan and Kousky, 2010; Lindell and Hwang, 2008; Browne and Hoyt, 2000) as

significant factors. There is also general agreement on the price inelasticity of insurance (Atreya et al., 2015; Landry

and Jahan-Parvar, 2011; Kriesel and Landry, 2004).

Several papers show that in the US insurance is purchased reactively after a flood (Kousky, 2017; Veigel et al.,

2023), which is linked to increased risk perception and an overestimation of the probability of a flood shortly after its

occurrence (Dumm et al., 2020). Studies characterize both the magnitude (salience), measured by the increase in the

take-up rate, and the duration (memory or time-to-forget), which refers to how long the elevated take-up rates persist

following the flood. Kousky (2017) finds that communities that suffered a flood in the previous year increase their net

flood insurance purchases by 6.7% and 7.2%, depending on whether a Presidential Disaster Declaration was issued.

According to her research, this effect disappears three years after the storm. Atreya et al. (2015) finds similar results,

stating that the temporary increase in flood insurance purchases after a flood event fades after three years. Studies

observe an immediate increase in the number of homeowners who own flood insurance in communities affected by

floods. According to Gallagher (2014) and Choi et al. (2024), the effect ranges from 7%-9% and then declines steadily,

becoming undistinguishable from zero nine years after the event. Similarly, while studying the housing market with

hedonistic models that explicitly incorporate linear and nonlinear temporal flood-zone effects, Atreya et al. (2013) finds

that the flood risk discount disappeared between four and nine years after the flood.

While these findings, derived from regression analyses, provide point estimates with confidence intervals, in many

cases they rely on the assumption of normally distributed salience and memory effects. Unlike regression-based
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approaches that assume parametric distributions, CPD can be implemented with non-parametric methods that detect

structural breaks in time series data without imposing distributional assumptions on the underlying process. To advance

our understanding of these temporal dynamics, we implement a change point detection algorithm (CPD) that allows for

an independent quantification of changes in flood insurance coverage for each county. Earlier regression-based studies

have highlighted the need to better understand how baseline risk perception and household adaptive capacity influence

post-disaster risk perception and subsequent insurance demand. By characterizing these heterogeneous distributions

of temporal changes across different risk and capacity profiles, we establish county-specific baselines that capture

the varying risk perceptions that influence post-disaster insurance behavior. Our methodological approach addresses

this gap by coupling the CPD results with unsupervised clustering of National Risk Index variables, enabling us to

characterize the heterogeneous distribution of temporal changes in insurance adoption patterns.

We analyze over 50 million insurance policies across the Contiguous United States (CONUS) from 2010 to 2021,

focusing on the following research questions: (1) how big is the change on insurance market dynamics after a flood

event, measured as a rise in insurance take-up rates, (2) how long does the effect on the insurance market last, following

a flood event until the market returns to initial levels, and (3) which observable characteristics from the counties under

study can explain the variability in memory and salience effects after a flood event. We incorporate the National

Risk Index to address the differences in the flood memory and salience resulting from the CPD analysis to uncover

patterns in memory and salience effects. By correlating risk index components with different aspects of flood memory

and insurance adoption patterns, we show how social vulnerability, risk perceptions, and flood damage correlate with

insurance coverage. This approach helps identify how strategies to counteract the insurance protection gap can be

tailored to the specific characteristics of underprotected communities.

2. Materials and Methods

In this study, we develop a data-driven approach that, in its first phase, analyzes insurance purchase data from the

U.S. National Flood Insurance Program (FEMA, 2023c) in combination with household information from the U.S.

Census Bureau (U.S. Census Bureau, 2022) to identify behavioral patterns of flood insurance purchase through CPD.

CPD is an ensemble of unsupervised learning techniques that identify critical points in a time series or data sequence

where the underlying data distribution changes (van den Burg and Williams, 2022). Those are called change points.

We compare the timing of the identified change points with the timing of occurrences of storms and flood events,

recorded in data from the U.S. National Oceanic and Atmospheric Administration (NOAA, 2023). This comparison

allows validating the existence of after-flood salience effects and analyzing their impact, in terms of flood insurance

take-up change, and duration. A flowchart summarizing the steps included in our analysis is shown in Figure 1. After

building our input dataset (Panel building in the figure) and performing change point detection (Identifying change
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Figure 1: Flowchart summarizing the sequential analysis steps to identify and characterize flood insurance purchasing
patterns. Our analysis relies on data from the U.S. National Flood Insurance Program and U.S. Census Bureau. The first
two steps (Panel building and Identifying change points ) investigate temporal changes in insurance adoption through
CPD analysis, validated against NOAA storm and flood event data to identify post-flood salience effects. The bottom
panels (Explaining memory: Features and Explaining memory: Model) include feature engineering and cluster analysis
incorporating demographic data, NFIP Community Rating System participation, and FEMA’s National Risk Index to
identify key predictors of insurance purchasing behavior. Principal Component Analysis and K-means cluster analysis
characterize distinct patterns in insurance adoption and social memory effects across different US counties. The data
source of each step is reported in the figure, along with a reference to the results relative to each step.

points), we perform feature engineering via dimensionality reduction (Explaining memory: Features) to recognize a

relevant subset of potential predictors from a combination of variables including demographic information from the

U.S. Census Bureau (U.S. Census Bureau, 2018), NFIP participation information from the Community Rating System

(CRS) (FEMA, 2021), and natural and social risk information from FEMA’s National Risk Index (FEMA, 2023a). We

identify the principal components (PCs) affecting salience and memory effects, and finally group the counties under

analysis into clusters with similar insurance purchase and social memory behavior (Explaining memory: Clustering.

The following sections describe each step of our analysis (Boxes 1-4 in Figure 1) in detail.
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2.1. Panel building

We analyze household flood insurance purchase data from the United States NFIP, a federal government initiative

tasked with providing affordable flood insurance to homeowners, renters, and businesses in participating communities.

The NFIP program maintains a public data source containing over 80 million records of household flood insurance

purchases since 1970 (FEMA, 2023c). For this study, we use data comprising over 50 millions of records, covering

the period 2010-2021.

We pre-process the data as follows, before feeding them to step 2 of our analysis. First, we spatially and temporally

aggregate the insurance purchase data by adding them up at a county level and with a monthly time-step. This decision

strikes a balance between managing the computational complexity of a country-wide high-resolution analysis and

capturing enough data to have a detailed view of the salience and duration effects. Second, we rescale the insurance

data by the number of households per county from the Federal Census Bureau, and subsequently define our take-up

rate variable 𝑦𝑐,𝑡 as the net proportion of households that purchased or renewed their flood insurance policies in a given

month 𝑡, for a given county 𝑐.

We thus build a panel of insurance take-up rate signals defined as

𝑦𝑐,𝑡 =
𝑝𝑐,𝑡
ℎ𝑐,𝑡

, (1)

where 𝑝𝑐,𝑡 is the number of flood insurance policies purchased or renewed in county 𝑐 during month 𝑡, and ℎ𝑐,𝑡 the

estimated number of households in county 𝑐 in month 𝑡. As the household information is provided by the U.S. Census

Bureau every 10 years, we fit a linear interpolation to estimate the monthly number of households per county.

Finally, to remove trends from the time series signals, we substract the take-up rate at time 𝑡 from the closest

previous element in the series. This results in the detrended take-up rate 𝑑𝑐,𝑡, formulated as

𝑑𝑐,𝑡 = 𝑦𝑐,𝑡 − 𝑦𝑐,𝑡−1. (2)

We analyse these variables as time series and use change point detection to find relevant changes in their

distributions. We define the salience as the spike in the insurance take-up—expected to happen shortly after a flood

due to updated risk perception—expressed in percents, and the memory effect as the time it takes for the insurance

coverage to drop back to pre-flood levels, expressed in months. We refer to the time to drop back to pre-flood levels as

the “memory effect" and the “time to forget" interchangeably.

Since the objective of our study is to analyze the salience effect on the insurance market after a flood event, we set

minimum thresholds on both the insurance take-up rate at 𝑡0, i.e., prior to a flood event, at 0.2%) and the damage to

infrastructures due to flood events at USD $6,000. These thresholds account for 99% of the infrastructural damage in
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the NOAA database and 99% of the total insurance policies active during the study period. With those thresholds in

place, our study sample consists of a panel of 1.678 counties in the contiguous U.S., corresponding to 53% of all US

counties. The detrended time series of insurance take-up rate for each of retained counties comprises 144 data points

recorded between January 2010 and December 2021.

2.2. Change points identification

Owing to the high dimensionality of our problem and the need for a tool that is sensitive to short-term variations,

we use CPD to analyze the detrended time series of flood insurance take-up rate obtained in the above data gathering

and pre-processing step. CPD is the task of (i) statistically determining if there are distribution changes within a signal

or time series and (ii) pinpointing the exact locations where changes in distribution occur (Harchaoui et al., 2008). It

can be seen as a segmentation exercise, where a full signal 𝑦𝑡 is split into segments of similar distribution, delimited

by a set of indexes aptly named change points (van den Burg and Williams, 2020). CPD methods are flexible and

computationally light, allowing us to test a broad palette of algorithms to find the most suitable one for our sample.

The optimization problem associated with CPD can be generalized as

min
𝜏

𝑛−1
∑

𝑖=1
𝐶(𝑦𝜏𝑖,𝜏𝑖+1 ) + 𝜆𝑃 (𝑛) (3)

where 𝜏 represents a segmentation of the signal, defined by a set of change points {𝜏1, ..., 𝜏𝑛}. The function𝐶(𝑦𝜏,𝜏+1)

represents the cost for each segment of the signal, a measure of disagreement between the data points and a proposed

distribution, with negative maximum log-likelihood being one of the most common. 𝑃 (𝑛) represents a penalty function

for the number of segments, and 𝜆 stands for the set of hyperparameters used to calibrate said penalty (different methods

define 𝜆 as a single value or as a complex set of parameters). The risk of overfitting by segmenting the signal into too

many parts is balanced by the penalty value and further calibrated by the set of hyperparameters 𝜆. In this way, 𝐶 , 𝑃 ,

and 𝜆 become the three fundamental components of any CPD method.

Taking into account previous literature on the comparative performance of known CPD methods (Truong et al.,

2020; van den Burg and Williams, 2020; Aminikhanghahi and Cook, 2017), we test a battery of six CPD methods with

twenty combinations of 𝐶 , 𝑃 , and 𝜆 parameters. We include both parametric approaches - which generally assume

normal distribution and independence of the variables in the signal - and non-parametric approaches - which are able

to segment a signal with an unknown distribution - in our analysis: Binary Segmentation [BINSEG] (Scott and Knott,

1974) and Pruned Exact Linear Time [PELT] (Killick et al., 2012) as parametric approaches, and Non-parametric PELT

(Haynes, Kaylea et al., 2016), Energy Change Point Agglomerative (Matteson and James, 2013), Energy Change Point

Divisive (Matteson and James, 2013), and Energy Change Point Divisive on Medians [EDM] (James et al., 2016) as
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non parametric methods. For more details on the methods refer to Supporting Notes - Section 1.3. We then compare the

detected change points with the actual flood events data from NOAA (NOAA, 2023). For this comparison, we define a

15-months window after a flood event, in which a change point is considered a true positive. The true positive window

is set in that range to capture short-term effects, but considering that flood insurance policyholders tend to let their

year-long policies lapse instead of canceling them in mid-duration (Michel-Kerjan et al., 2012). Detailed explanations

and mathematical formulations of the selected metrics are described in the Supporting Notes - Section 1.1.

2.3. Explaining memory: Feature Engineering

Following the identification of change points with CPD, we implement Principal Component Analysis (PCA) to

reduce the dimensionality of multiple potential flood-related determinants of flood insurance adoption patterns into

interpretable components (Jolliffe, 2002). PCA transforms the original 𝑛-dimensional data through eigendecomposition

of the covariance matrix Σ:

Σ = 𝑉 Λ𝑉 𝑇 (4)

where V contains the eigenvectors (principal components (PCs)) and Λ contains the eigenvalues representing the

variance explained by each PC. Each PC is constructed as a linear combination of the standardized original variables:

𝑃𝐶𝑖 =
𝑛
∑

𝑗=1
𝑤𝑖𝑗𝑥𝑗 (5)

where 𝑤𝑖𝑗 represents the loading of variable 𝑗 on principal component 𝑖, and 𝑥𝑗 is the standardized transformation of

the original 𝑗-th variable. As an output of this dimensionality reduction step, we obtain the set of numerical weights,

representing the relative contribution of each input variable on the resulting principal components. The input variables

are CRS participation, risk score, yearly average events, average yearly damage, class rating, initial Take-up, water

cover, resilience score, disadvantaged population amd social vulnerability score. They were extracted from the National

Risk Index data (FEMA, 2023b).

2.4. Explaining memory: Clustering

In order to identify distinct patterns in county-level flood response characteristics, we implement the k-prototypes

clustering algorithm (Huang, 1998). Proposed as an extension of k-means clustering (Lloyd, 1982) k-prototypes

clustering is built with capabilities to handle both numerical and categorical variables. We base the clustering process

on our objective variables salience and memory, our dependent variables transformed into principal component scores,

and a categorical variable coastal that indicates whether a county is located on the shoreline. This last element
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provides key inputs for the clustering process, as coastal and in-land counties are subject to significantly different

risks, contexts, and policies when it comes to floods. The k-prototypes algorithm partitions counties into clusters by

iteratively minimizing both the within-cluster sum of squared Euclidean distances between each numerical observation

and its assigned cluster centroid, and also the matching dissimilarity measure on the categorical attributes. A weight 𝛾 is

used to avoid favoring either type of attribute. We conducted an iterative random search comparing gamma values in the

range from 5 to 5000. We selected the best fit based on how well categorical values (most importantly coastal/inland

indicators) were represented in our results, determining a 𝛾 value of 1000. The function to minimize can thus be

expressed as:

argmin
𝐶

𝑘
∑

𝑖=1
(
∑

𝑥∈𝐶𝑖

𝑝
∑

𝑗=1
(𝑥𝑗 − 𝜇𝑖,𝑗)2 + 𝛾

∑

𝑥∈𝐶𝑖

𝑚
∑

𝑗=𝑝+1
𝛿(𝑥𝑗 , 𝜇𝑖,𝑗)) (6)

where 𝐶𝑖 represents cluster 𝑖, 𝑥 is a vector representing a county’s position in the three-dimensional PC space (𝑝

numerical values) and categorical space (𝑚 − 𝑝 categorical values), and 𝜇𝑖,𝑗 is the centroid of cluster i.

3. Results

The set of counties shown in Figure 2 (top map) represents the working sample of counties retained after

establishing the minimum thresholds for damage and take-up rate. This working sample of 1678 counties covers all

48 states in the Contiguous U.S. It contains representative samples from coastal and inland territories alike, all nine

groups of climate in CONUS, and different levels of flood risk as measured by the SFHA risk indicator.

3.1. Overall trend in policies

While the number of housing units in all counties appears reasonably stable, with a median of 1% growth over

the ten years of study, the median number of active flood insurance policies dropped by 34% in a decade, dragging

the median take-up rate to a similar decrease of 36% during our sample period (see Equation 1 for the definition

of the research variable). The existence of this downward trend in the monthly take-up rate is counter-intuitive as the

underlying risk of flood in the US is increasing due to the climate change emergency (Wing et al., 2022). This indicates

that households in their flood insurance decisions are not considering the long-term increase in the underlying flood

hazard or that they may be affected by short-term affordability constraints.

3.2. CPD Results

The metrics and performance evaluation of the CPD method is described in detail in the Supporting Notes - Section

1.1 The Recall metric represents the number of simulated change points that match with a change point in the ground

truth data. We defined Non-parametric PELT (Killick et al., 2012) as the best-fit method for our study, based on a
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Table 1
Descriptive statistics of CPD results and sample of US counties considered for CPD in our analysis.

Descriptive statistic Value Relative Percentage

Total Counties in sample (n) 1,678 100.00%
Counties with positive recall (n) 947 56.44%
Counties with salience effect (n) 756 45.05%

Salience mean (%) 7.92
Salience median (%) 2.30
Salience std. dev. (%) 22.54

Memory mean (months) 28.03
Memory median (months) 18.00
Memory std. dev. (months) 25.92

combination of performance metrics including Recall, Precision, Annotation error, and Hausdorff distance. The full

results of the CPD methods performance test can be found in Supporting Information Figure 1. In our specific case,

the PELT CPD method’s Recall indicates that 24.5% of the change points in the take-up rate time series overlays with

damage-inducing flood events (see Supporting Information Table 2). Moreover, 947 of the 1,678 counties in the sample

(56.44%) have at least one flood event which correlates with a detected change point in the take-up rate signal (see

Supporting information Figure 1 for a comparison of model performance). Although the CPD methods do not allow us

to claim causality these results, along with multiple other studies analyzing similar dynamics (Gallagher, 2014; Choi

et al., 2024), our analysis shows that such methods are suitable to analyze flood insurance fluctuations and identify

substantial changes.

For the counties and flood events with an increase in the insurance market after a flood event, we proceed to analyze

if and how long it takes for their memory effect to wear out. Figure 2 presents the results of the analysis, where we

find 756 counties where a flood event is followed by an increase in the take-up rate and then a drop back to base levels,

and the distance of this drop, the time to forget exhibits a mean of 28.03 months (i.e., 2.3 years) and a median of 18

months (1.5 years).

The top map in Figure 2 displays three levels of flood impact on insurance spikes (low to high) across US counties,

showing high salience values along major river systems like the Mississippi river, and low salience in coastal regions.

The accompanying histograms show the distribution of the flood memory effect (ranging to 120 months) and flood

salience (measured as percentage change). A detailed highlight of the selected case study of Suwannee County, Florida,

showcases a typical pattern of temporal dynamics of insurance take-up rates, showing distinct change points following

flood events and a characteristic “time to forget" pattern where insurance participation gradually declines. Social

memory might be way shorter than proposed by previous studies, with the average time-to-forget standing at 28.03

months. This time is just a little over two years, which is in contrast to the three to nine years previously proposed.

Extreme weather events can have an average impact of a +7.92% in insurance take-up rate, consistent with previous
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Figure 2: Analysis of flood salience and memory across a sample of 1678 U.S. counties, selected based on threshold
criteria of damage and flood insurance take-up rates. The map in panel A, top-left, shows the geographical distribution
of three levels of salience effects (low, mid, high), indicated with different colors. The zoom window in panel B shows the
geographical distribution of memory and salience in the southeastern coast. A corresponding frequency distribution of the
salience and memory variables by county are represented in the two histograms below the map (panel C). As an example,
Suwanee County in Florida is selected to illustrate the temporal evolution of flood insurance take-up rates in a high salience
county (panel D). The identified change points are marked as orange dots in the timeline and the flood occurrences are
indicated as green vertical lines.

researchers’ conclusions. However, considering the distribution median, this result decreases to +2.30%, which is

indicated in Table 1 as "salience median".

Given the skewed distribution of memory and salience shown in the histograms in Figure 2, the mean values of

salience and memory alone do not capture the heterogeneity of flood insurance update and memory across different

counties. In the next sections, we disentangle the distribution of memory and salience with additional data, which will

allow us to identify and characterize different behavioral groups.

3.3. PCA revealing heterogeneous flood insurance take-up characteristics

We created three combined variables using PCA, which linearly combines and weights individual drivers of

flood insurance adoption (shown on y-axis in Figure 3 top panel). The first three PCs accounted for 61.6% of the

variance in the data, thus we limit our analysis to such components (see Supporting Figure 2). An analysis of the

variables that contribute the most to each of the three main PCs reveal distinct determinants in each PC. PC1 captures

risk perception, heavily weighted by initial take-up rates, CRS class rating, risk score, and percent water coverage.

PC2 primarily captures social vulnerability aspects, with strong PC loadings on social vulnerability scores, negative
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Figure 3: The top panel a shows the rotation of each variable for the PC’s 1-3. The first component (PC1) primarily
captured social vulnerability metrics, with strong loadings on social vulnerability scores and disadvantaged population
percentages. PC2 represented risk perception through variables like initial take-up rates and percent water coverage, while
PC3 characterized flood damage patterns through average yearly damage and event frequency measurements. The three
maps in the bottom (panel B) show the geographical distribution of the PC values for counties, where change points in
insurance uptake match with simulated change points. High risk perception (PC1) is clustered around the shoutheastern
coast, social vulnerability (PC2) is heterogeneously distributed and the highes flood damage values are centered in the
southwest.

resilience score, and disadvantaged population percentages from the census data (U.S. Census Bureau, 2022). PC3

clearly identifies flood damage patterns, dominated by average yearly damage and event frequency. These results show

that risk perception and flood damage appear as independent PCs, both simultaneously contributing to explaining the

variance in the dataset individually. This suggests that risk perception and actual risk do not necessarily overlay in

the US, meaning that individual choices may be driven by perceptions that can different from observed actual flood

risk. The corresponding maps in the bottom part of Figure 3 report a geographical distribution of the three selected

PCs, showing which counties are primarily characterized by each of them. The resulting geographical distribution

reveals distinct spatial patterns - social vulnerability concentrating in the southern counties, risk perception peaking

along coastlines, and flood damage presenting a more dispersed pattern across the eastern United States. These distinct

spatial patterns raise the question of how these components interact to form distinct county-level response types, i.e.,

how they relate to different patterns of flood insurance salience and memory.

3.4. Disentangling the memory and salience distribution with cluster analysis

The clustering analysis presented here synthesizes the previous findings through grouping counties based on our

response variables (salience and memory), our independent variables grouped into principal components (PC1, PC2,
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Figure 4: The scatter plot shows clustering results. The clustering shows groupings of counties with similar characteristics,
particularly distinguishing between coastal counties with high risk perception (c1, c2) and in-land counties with lower flood
risk perception (l1, l2, l3), counties with both low social vulnerability and low risk perception which respond with a high
salience and long memory to flood events (clusters l1 and c1), and highly vulnerable, high risk perception coastal counties
with low salience and short flood memory (cluster c2). Clusters are shown on the map to verify geographical patterns. In
the histograms in the right panel the clustering is mapped onto the salience and memory effects.

and PC3), and the categorical binary variable coastal, which indicates whether a county is on the shoreline. The

clustering results are then mapped onto the histograms of memory and salience to evaluate the connection between the

identified clusters and the distributions of salience and memory. Our cluster analysis resulted in the identification of

k=5 different clusters of counties, which exhibit different salience and memory effects, each characterized by different

combinations of PCs and coastal/inland communities. The top scatter plot in Figure 4 shows these five resulting distinct

clusters, each further detailed with descriptive statistics in Table 2. Overall, trade-offs between social vulnerabity

characteristics, flood damage, and risk perception emerge from the cluster distribution in the scatter plot. Communities

with high social vulnerability do not comparatively exhibit high risk perception and communities with high risk

perception are not necessarily affected by flood damage. Clusters c1 and c2 include coastal counties, characterized by

a higher risk perception than their in-land counterparts in clusters l1, l2, and l3. The highest risk perception appears in

c2, with flood-prone, comparatively vulnerable counties mostly found in Florida, the Gulf of Mexico, and the southern

Atlantic coast. The counties in this cluster present a low salience effect of 2.8%, and a short memory effect of 8.6 months

on average, which can be due to these markets having a significantly higher flood insurance penetration of 14.3% initial

take-up rate, compared to a 1.08% on average for in-land counties. Meanwhile, c1 includes low vulnerability counties

mostly located in the north-Atlantic coast and the Great Lakes. This group shows a lower risk perception than c2,

which corresponds to a lower participation in the NFIP, but a relatively high salience effect after flood events with a
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Table 2
Descriptive statistics from cluster analysis and resulting insurance take-up rate salience and memory effects organized by
cluster.

Cluster c1 c2 l1 l2 l3

Counties in cluster (n) 56 44 160 165 154
Coastal counties in cluster (n) 56 44 0 0 0
Avg. initial take-up rate (%) 5.26 14.31 0.81 1.39 1.04
PC1: Risk Perception (index) 0.79 2.18 -1.21 -0.82 -0.92
PC2: Social Vulnerability (index) -1.17 0.25 -0.95 1.99 0.13
PC3: Flood Damage (index) -1.71 -1.79 -1.12 -0.89 -0.99

Salience mean (%) 10.52 2.83 21.50 18.99 5.11
Salience median (%) 7.97 2.63 16.00 12.70 4.27
Salience std. dev. (%) 8.63 2.22 20.27 21.61 4.01

Memory mean (months) 38.15 8.57 45.58 32.21 8.92
Memory median (months) 31 8 37 25 9
Memory std. dev. (months) 23.04 5.25 27.33 22.12 4.29

median impact of 10.5% and a memory effect of 38.2 months on average, indicating a reactive, yet long-lasting flood

insurance take-up behavior (once a flood insurance is purchased, it is retained for longer time than the average for

all data points combined). A noteworthy point is that both of the coastal clusters have, on average, a slightly lower

yearly infrastructural damage measure in comparison to in-land counties, which could relate to flood resilience built

over the years of NFIP intervention. When it comes to in-land counties, the l1 cluster shows similar characteristics to

c1 in terms of reactive behavior: communities of low social vulnerability with minimal NFIP participation (low risk

perception), but a strong salience effect when hit with a flood event. Mostly located in the area of the Midwest and

Great Lakes towards the Mid-Atlantic, the l1 cluster shows the highest average after-flood effects in our sample, with

an average impact of 21.5% and an average memory of 45.6 months. Cluster l2 stands at the opposite end of the social

spectrum with highly vulnerable counties mostly located in the deltas of main rivers like the Mississippi, Colorado,

and Columbia. And yet, this cluster’s behavior resembles c1 in showing a high 19.0% salience effect and an average

memory of 32.2 months. Lastly, cluster l3 is characterized by a moderate social vulnerability, low risk perception (in

between l1 and l2) and does not show a defined geographical pattern. Despite its low level of risk perception (and

therefore, low NFIP participation) and moderate flood damage, the counties in l3 exhibit a reactive response with a

5.1% average impact measure and a short average memory of only 8.9 months.

4. Discussion & Conclusions

In this study, we analyze over 50 million records of household flood insurance purchase across the Contiguous

U.S. from 2010 to 2021 and contribute a data-driven framework based on CPD, dimensionality reduction via PCA,

and clustering to identify heterogeneous flood insurance purchase patterns for US counties, along with their salience

and memory effects. Our findings demonstrate that household responses to flood events through insurance adoption are
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characterized by both heterogeneous magnitude (salience) and duration (memory). This temporal pattern suggests a

significant challenge in maintaining equality in long-term flood resilience through voluntary insurance programs. The

magnitude of flood events’ impact on insurance adoption is an average increase of 7.92% in take-up rates. However,

we found that this result decreases to 2.30% when looking at the distribution median. With these results we confirm

the findings of past research efforts in that, for most communities in the U.S., flood insurance is purchased reactively

after floods.

Yet, we find that social memory in the context of flood events, i.e., the time it takes for the temporary increase in

flood risk salience after an extreme weather event to fade, may not be as enduring as previously believed. With the

proposed methodological setup we find an average "time-to-forget" period of 28.03 months, with a median of only 18

months. Our results indicate shorter memory than the three to nine years suggested by earlier research (Kousky, 2017;

Atreya et al., 2015; Gallagher, 2014), with a heavy-tailed distribution that accounts for a highly heterogeneous sample.

We addressed the gap in identifying drivers of the heterogeneous distribution of flood insurance memory and

salience. We show that households in counties with greater risk perception may proactively invest on insurance (clusters

c1 and c2), which aligns with the findings of (Landry and Turner, 2020), namely that the risk perception of future

damage is a reliable determinant of insurance take-up. We also find that counties with low social vulnerability (clusters

l1 and c1) seem to have a lower risk perception and to be less prone to invest a priori in flood insurance, compared

to similar communities in other clusters. The counties in these low social vulnerability clusters, however, exhibit high

salience and long memory effects, implying an effective process for self-actualization of the risk perception after a

flood event. Additionally, we find a group of 154 in-land counties (cluster l3) that, despite showing a low level of

risk perception, low NFIP participation, and moderate flood damage, exhibit a reactive response to floods with a 5.1%

average impact measure and a short average memory of only 8.9 months. In these areas, insurance is usually taken up

after the event and drops quickly with a return to the low pre-flood levels, leaving these areas vulnerable to experience

uninsured losses. We find no evidence that this reactive behavior is due to affordability issues, since clusters with higher

social vulnerability (cluster l2) show higher salience and longer memory effects. This group then shows a behavior

consistent with previous literature, where the flood damage risk gets discounted based on the relative infrequency of

flood events (Dumm et al., 2020).

Overall, the comparison of our clustering results shows large heterogeneity in the flood insurance purchase and

trade-offs in the tenure behaviors of different counties and communities, suggesting that a one-size-fits-all approach to

flood insurance policy may be suboptimal.

Several methodological constraints remain, posing limitations to interpreting our results. First, the county-level

aggregation of flood experience may mask significant within-county variations in direct flood exposure, a limitation

also described by Choi et al. (2024), who note that this aggregation could potentially underestimate the insurance
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response among directly affected households. Additionally, our focus on non-Special Flood Hazard Areas zones may

be influenced by pre-existing communication biases about flood risk.

Second, in this study we primarily focus on the effects of direct flood experience while disregarding the potential

influence of proximity effects, such as floods occurring in nearby counties or the influence of social networks. Previous

research has analyzed social and geographical proximity effects with positive results (Gallagher, 2014; Hu, 2020, 2022).

Disregarding these effects might negatively influence our evaluation of change point detection methods, particularly

the precision and recall metrics, as some real effects might have been incorrectly considered “false positives.”

Our large-scale data-driven analysis ultimately provides evidence supporting the formulation of strategies to

counteract the flood insurance protection gap in the US. For instance, extending policy terms and introducing flexible

payment structures could effectively address the identified challenges of short-lived insurance adoption and long-term

declining participation rates. Additionally, we contribute to the quantitative basis for equitable accessibility by showing

which factors should be considered when adapting premiums and which areas would benefit the most from those

policies. Beside addressing the individual limitations discussed above, future research should focus on evaluating the

effectiveness of risk communication strategies in fostering and maintaining long-term sustained insurance coverage,

encouraging insurance update and moving beyond currently dominating reactive behaviors and short social memory.
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